3 Análise da Estabilidade – Modelo de Molas

Apresenta-se neste capítulo, a análise estática da estabilidade de torres estaiadas, sendo os estais modelados como molas lineares, molas bi-lineares e molas não-lineares. No próximo capítulo apresenta-se a análise da estabilidade considerando o modelo de cabos (equação da catenária). A carga crítica e os caminhos de equilíbrio para a estrutura perfeita e imperfeita são obtidos a partir da expressão da energia potencial total, usando-se o princípio da energia potencial mínima. Uma apresentação clara da aplicação de métodos de energia para a análise da estabilidade de estruturas pode ser encontrada, por exemplo, em Croll e Walker [13] e Thompson e Hunt [14]. Usando-se essas equações, fazse uma análise paramétrica da influência dos parâmetros geométricos e físicos, bem como das imperfeições de carga e geometria na carga crítica e nos caminhos de equilíbrio.

3.1. Modelo de molas lineares

Figura 3.1: Modelo de molas: (a) configuração inicial. (b) configuração perturbada.

A Figura 3.1 apresenta uma barra rígida de comprimento *L* presa a duas molas e sujeita a dois tipos de carregamentos, carga axial *P*, disposta a uma altura *H* do apoio da barra, e uma outra carga axial *p* devida ao peso próprio, situada no centro de gravidade, \overline{y} , da barra. Cada mola tem uma inclinação α e está fixada à barra a uma distância *h* do apoio da mesma. Na Figura 3.1 mostrase a geometria da torre e o carregamento. Na Fig. 3.1a, apresenta-se a torre na

configuração fundamental de equilíbrio cuja estabilidade se deseja analisar e, na Fig. 3.1b, a estrutura sujeita a uma perturbação cinematicamente admissível, q.

3.1.1. Energia Potencial total

A variação da energia potencial total, Δp , entre as duas configurações exibidas na Figura 3.1, é dada por

$$\Delta \boldsymbol{p} = \Delta \boldsymbol{U} - \Delta \boldsymbol{W} \tag{3.1}$$

onde ΔU é a variação da energia interna de deformação e ΔW é a variação do trabalho das cargas externas. Estas parcelas de energia são apresentadas a seguir.

3.1.2. Energia interna de deformação

A força que age em uma mola linear é dada por

$$F = k_1 \Delta l \tag{3.2}$$

onde k_1 é a constante de mola e ΔI é o seu alongamento.

A energia interna de deformação armazenada em uma mola devida a um alongamento ΔI é dada por

$$U = \frac{k_1}{2} \Delta I^2 \tag{3.3}$$

Considerando que o alongamento ΔI da mola pode ser a soma de um alongamento inicial ΔI_0 , com a mola pré-tensionada em q = 0, mais o alongamento causado durante a rotação q da barra, ΔI_q , pode-se escrever ΔI como:

$$\Delta I = \Delta I_q + \Delta I_0 \tag{3.4}$$

Inserindo (3.4) em (3.2) e fazendo $\Delta I_q = 0$ e $F = F_0$, determina-se ΔI_0

$$\Delta I_0 = \frac{F_0}{k_1} \tag{3.5}$$

e a força na mola pode ser reescrita como

$$F = F_0 + k_1 \Delta I_q \tag{3.6}$$

Substituindo ΔI_0 em (3.4) e inserindo este resultado em (3.3), a energia interna de deformação na posição perturbada toma a forma

$$U = \frac{1}{2} \frac{F_0^2}{k_1} + F_0 \Delta l_q + \frac{1}{2} k_1 \Delta l_q^2$$
(3.7)

Assim, a força na mola e a energia interna de deformação já levam em conta a força de um possível pré-tensionamento, F_0 .

Na formulação apresentada a seguir e usada nos programas computacionais desenvolvidos, considera-se um número arbitrário de molas e cargas concentradas.

A variação do comprimento de uma mola *i* devida à rotação q é dada por

$$\Delta I_{qi} = \boldsymbol{g}_i L \left(\sqrt{\left(\frac{1}{\tan \boldsymbol{a}_i} + \operatorname{sen} \boldsymbol{q}\right)^2 + \cos^2 \boldsymbol{q}} - \sqrt{\frac{1}{\tan \boldsymbol{a}_i^2} + 1} \right)$$
(3.8)

onde se considera que o ângulo q é positivo no sentido apresentado na Figura 3.1b e g relaciona a posição, h, de fixação da mola na barra com o comprimento da barra, L, g = h/L (Figura 3.1a).

O valor de ΔI_q para as molas à direita da torre, que encurtam com um q positivo, é

$$\Delta l_{qi} = \boldsymbol{g}_i L \left(\sqrt{\left(\frac{1}{\tan \boldsymbol{a}_i} - \operatorname{sen} \boldsymbol{q}\right)^2 + \cos^2 \boldsymbol{q}} - \sqrt{\frac{1}{\tan \boldsymbol{a}_i^2} + 1} \right)$$
(3.9)

3.1.3. Trabalho das forças externas

A variação do trabalho das forças externas, ΔW , produzido pelas cargas externas concentradas, *Pi*, e a carga devida ao peso próprio, *p*, durante uma rotação **q** da barra é dada por:

$$\Delta W = pyL(1 - \cos q) + \sum_{i=1}^{np} P_i \Gamma_i L(1 - \cos q)$$
(3.10)

onde:

np é o número de cargas concentradas ao longo da coluna;

 Γ relaciona a posição de aplicação da carga com o comprimento *L* da barra ($\Gamma = H/L$), como indicado na Figura 3.1a;

y relaciona o centro de gravidade \overline{y} , da barra, com o comprimento *L* $(y = \overline{y}/L)$;

3.1.4. Equação do caminho pós-crítico de equilíbrio

Derivando a expressão da energia potencial total (Eq. (3.1)) em relação à coordenada generalizada q, obtém-se a equação não-linear de equilíbrio do caminho pós-crítico. Isolando a carga concentrada P_1 , tem-se:

$$P_{1} = \frac{1}{\Gamma_{1} \operatorname{sen} q} \left(\sum_{i=1}^{nm} \frac{d}{dq} \left(\frac{1}{2} \frac{F_{0}^{2}}{k_{1}} + F_{0i} \Delta I_{qi} + \frac{1}{2} k_{1i} \Delta I_{qi}^{2} \right) \frac{1}{L} - \sum_{i=2}^{np} P_{i} \Gamma_{i} \operatorname{sen} q - py \operatorname{sen} q \right)$$
(3.11)

onde nm é o número de molas.

A equação do caminho pós-crítico de equilíbrio pode ser escrita em uma forma adimensional. Considere o caso mostrado na Figura 3.1, em que as únicas cargas concentradas são P e o peso próprio p, e que há apenas duas molas. Substituindo o alongamento correspondente a cada mola (equações (3.8) e (3.9)) em (3.11), o caminho pós-crítico, escrito em uma forma adimensional, é dado por

$$I_{P1} = \frac{\cos q}{\sin q} \left(x_0 \left(\frac{1}{\sqrt{\tan a_1^2 + 2 \tan a_1 \sin q + 1}} - \frac{1}{\sqrt{\tan a_1^2 - 2 \tan a_1 \sin q + 1}} \right) + x_1 \left(\frac{\sqrt{1 + 2 \cos a_1 \sin a_1 \sin q} - 1}{\sin a_1 \sqrt{\tan a_1^2 + 2 \tan a_1 \sin q + 1}} - \frac{\sqrt{1 - 2 \cos a_1 \sin a_1 \sin q} - 1}{\sin a_1 \sqrt{\tan a_1^2 - 2 \tan a_1 \sin q + 1}} \right) \right) (3.12)$$
$$-x_p$$

sendo:

$$\boldsymbol{I}_{P1} = \frac{P_1 \Gamma_1}{k_1 L} \tag{3.13a}$$

$$\boldsymbol{x}_{p} = \frac{p\boldsymbol{y}}{k_{1}} \tag{3.13b}$$

$$x_0 = \frac{F_{01}g_1}{k_1 L}$$
(3.13c)

$$x_1 = g_1^2$$
 (3.13d)

Para se chegar à equação (3.12), considerou-se que as duas molas são idênticas, como acontece usualmente nas aplicações práticas, simplificando assim as equações.

3.1.5. Análise da carga crítica

O valor de I_{P1} obtido no limite quando q tende a zero é dado por

$$I_{Pcri} = 2\cos a_1^{2} (x_1 - x_0 \operatorname{sen} a_1) - x_p$$
(3.14)

Verifica-se que o parâmetro de carga crítica, I_{Pcri} , dado pela equação (3.14), é função dos parâmetros adimensionais x_0 , x_1 , x_p e a_1 . Tem-se pois que a função carga crítica descreve uma superfície no espaço quadridimensional.

Para ilustrar como a carga crítica é influenciada por essas variáveis, a Figura 3.2 apresenta algumas variações do parâmetro de carga crítica, 1_{Pcri}, com essas variáveis, onde, em cada caso, os parâmetros mantidos constantes assumem valores na faixa daqueles encontrados em aplicações práticas. Na Fig. 3.2a e 3.2b varia-se a_1 para dois valores distintos de x_p e quatro combinações de a_1 e x_1 . Na Fig. 3.2c varia-se x_0 para alguns valores diferentes de a_1 e x_1 , considerando $x_p = 0$, e na Fig. 3.2d varia-se x_1 para diferentes valores de a_1 e x_0 (x_p =0). Verifica-se nas Figuras (a) e (b) que I_{Pcri} decresce de forma não linear a medida que a_1 cresce, sendo mais afetado pela variação do ponto de fixação do cabo (x_1) que pela protensão do mesmo (x_0) . Quando o peso próprio da torre é pequeno ($x_p \approx 0$), a carga crítica é sempre positiva, independente do valor de a1. Entretanto, quando o peso próprio é uma parcela considerável da carga crítica, existe um valor a_1 limite a partir do qual a carga crítica se torna negativa. Com relação ao parâmetro de protensão das molas, verifica-se que a carga crítica decresce linearmente com x_0 , mas que, dentro dos limites práticos, este valor tem pouca influência sobre 1_{Pcri}. Finalmente, verifica-se em (d) que I_{Pcri} cresce linearmente com x_1 , sendo a taxa de crescimento bastante influenciada por a₁. Estas conclusões são confirmadas através da análise das derivadas de *I*_{Pcri} com relação aos seus parâmetros de controle.

Figura 3.2: Variação do parâmetro de carga crítica em função dos parâmetros adimensionais.

Derivando a equação (3.14) com relação às suas variáveis, obtêm-se

$$\frac{\partial I_{Pcri}}{\partial x_0} = -2\cos a_1^2 \operatorname{sen} a_1 \tag{3.15}$$

$$\frac{\partial I_{Pcri}}{\partial x_1} = 2\cos a_1^2 \qquad (3.16)$$

$$\frac{\partial I_{PCri}}{\partial \mathbf{x}_{P}} = -1 \tag{3.17}$$

$$\frac{\partial I_{Pcri}}{\partial a_{1}} = 2\cos a_{1}(2x_{0} \operatorname{sen} a_{1}^{2} - 2x_{1} \operatorname{sen} a_{1} - x_{0} \cos a_{1}^{2})$$
(3.18)

A partir destas derivadas, que podem ser consideradas como parâmetros de sensibilidade do parâmetro de carga crítica com relação a seus parâmetros de controle, verifica-se que, como esperado, I_{Pcri} decresce linearmente com o aumento do peso próprio da coluna (eq. (3.17)) e de forma não-linear com o

aumento da protensão, dependendo neste caso apenas do valor da inclinação da mola a_1 (eq. (3.15)). Para cada valor de a_1 , a relação entre I_{Pcri} e x_0 é linear. Verifica-se também que a derivada com relação a x_1 é sempre maior ou igual a zero, dependendo apenas de a_1 , sendo que em $a_1 = 0^\circ$, possui seu valor máximo, neste caso tem-se as molas na posição horizontal a uma altura g_1 . O sinal da derivada indica que um incremento no valor de x_1 sempre resulta em um aumento da carga crítica, e que x_1 tem seu efeito reduzido a medida que o ângulo a_1 cresce, sendo nulo em $a_1=90^\circ$ (mola vertical). Cabe ressaltar que a_1 e x_1 são os parâmetros geométricos que definem a geometria da mola em sua configuração fundamental. Já a derivada de I_{Pcri} com relação a a_1 depende dos diversos parâmetros de controle. Estas observações estão de acordo com os gráficos mostrados na Figura 3.2.

Derivando novamente (3.18) em relação a \mathbf{x}_0 e a \mathbf{x}_1 conclui-se que um incremento em \mathbf{x}_0 faz com que a derivada $\partial I_{Pcri} / \partial a_1$ cresça somente para $a_1 > 35,26^\circ$. Um incremento em \mathbf{x}_1 fará com que $\partial I_{Pcri} / \partial a_1$ sempre diminua de valor. O valor de $\partial I_{Pcri} / \partial a_1$ é sempre negativo se \mathbf{x}_0 e \mathbf{x}_1 forem positivos, indicando que ao aumentar-se a_1 , mantendo-se os outros parâmetros constantes, está-se diminuindo a carga crítica.

Com base nestas conclusões, pode-se supor que a máxima carga crítica ocorre para $a_1 = 0$, $x_1 = 1$, $x_0 = 0$ e $x_p = 0$. Uma situação ideal que não coincide com a maioria das torres encontradas na prática.

Um estudo da maximização da equação (3.14), utilizando o software LINGO, versão 8.0, indicou estas mesmas coordenadas para o ponto de máximo da função carga crítica.

3.1.5.1. Valor limite do parâmetro de protensão x_0

Verifica-se que \mathbf{x}_0 diminui a carga crítica da torre. Fazendo $\mathbf{I}_{Pcri} = 0$ na equação (3.14), chega-se ao seguinte valor má ximo para \mathbf{x}_0

$$\boldsymbol{x}_{0 \text{ lim}} = \frac{\boldsymbol{x}_1}{\text{sen}\boldsymbol{a}_1} \tag{3.19}$$

Escrevendo (3.19) em termos das variáveis dimensionais, conclui-se que o valor máximo para a carga de pré-tensionamento é

$$F_{01\rm lim} = \frac{g_1 k_1 L}{\rm sen a_1} \tag{3.20}$$

Se F_{01} for igual a (3.20), a carga crítica é zero e a torre perde a estabilidade exclusivamente em virtude da protensão dos estais. Note que $g_1L/\operatorname{sen} a_1$ é o comprimento da mola após receber o alongamento causado pela força F_{01} , isto quer dizer que é impossível aplicar uma carga maior que (3.20). Sendo F_{01} menor que (3.20), tem-se valores positivos para a carga crítica, como desejado. Assim, ao se projetar a torre, deve-se ter cuidado com a protensão dos estais, para que isto não prejudique a capacidade de carga da torre.

A equação (3.20) torna ainda mais evidente como as variáveis dimensionais influenciam na carga crítica. Aumentando g_1 , k_1 e L e diminuindo a_1 , está-se aumentando este valor limite da carga de pré-tensionamento, conseqüentemente está-se aumentando a carga crítica da torre estaiada.

3.1.5.2.

Análise da carga crítica a partir da equação na forma dimensional

Há uma relação entre $g_1 e_{11}$ que ainda não foi considerada na análise anterior. Se o comprimento do cabo é mantido constante ou se o cabo está preso a um ponto fixo no solo, quando varia-se a_1 acaba-se variando também g_1 . A diminuição de a_1 é benéfica para a carga crítica, porém isto diminui g_1 , que também influencia a carga crítica (quanto maior for g_1 , maior será a carga crítica, como visto anteriormente).

Trabalhando com a equação na forma original, isto é, com a equação (3.11), esta relação pode ser melhor compreendida.

A derivada da carga crítica em relação a g_1 é dada por

$$\frac{\partial P_{cri}}{\partial g_1} = \frac{\cos a_1^2}{\Gamma_1} (4Lk_1g_1 - 2F_{01} \operatorname{sen} a_1)$$
(3.21)

Considerando o comprimento da mola constante durante uma mudança na inclinação da mesma, a_1 é relacionado com g_1 através de

$$a_1 = \arcsin \frac{g_1 L}{s}$$
 (3.22)

Se o projeção horizontal da mola for mantida constante, a_1 é dado por

$$a_1 = \arctan \frac{g_1 L}{s_x}$$
(3.23)

onde s é o comprimento da mola e s_x , a sua projeção horizontal.

Fazendo o comprimento *s*, da mola na equação (3.22), ser igual a *b* vezes o comprimento da barra (s = bL) e substituindo (3.22) em (3.21), conclui-se que se F_{01} for maior que k_1bL , a derivada da carga crítica em relação a g_1 é negativa e conseqüente um aumento em g_1 diminui a carga crítica. Para $F_{01} < k_1bL$, um aumento em g_1 , embora também aumente a_1 , faz com que a carga crítica aumente. Nota-se que k_1bL é exatamente o valor dado em (3.20), então qualquer incremento em g_1 aumenta o valor da carga crítica.

Considerando o caso da equação (3.23), em que o cabo está preso a um ponto fixo no solo, s_x é tomado igual a **b** vezes o comprimento da barra. ($s_x = bL$). Substituindo (3.23) em (3.21), conclui-se que se F_{01} for maior que

$$F_{01 \lim g_1} = \frac{k_1 L \boldsymbol{b}^3}{\boldsymbol{b}^2 + \boldsymbol{g}_1^2} \sqrt[3]{\frac{\boldsymbol{b}^2 + \boldsymbol{g}_1^2}{\boldsymbol{b}^2}}$$
(3.24)

um aumento em g_1 diminui a carga crítica. Para F_{01} menor, uma aumento em g_1 faz com que a carga crítica aumente.

3.1.5.3. Consideração de várias cargas axiais

Quando o problema tiver várias cargas concentradas *P*, deve-se diminuir da equação (3.12), os valores de I_{Pi} dados por

$$I_{Pi} = \frac{P_i \Gamma_i}{k_1 L} \tag{3.25}$$

tendo portanto, o mesmo efeito do peso próprio.

3.1.6. Caminho pós-crítico de equilíbrio

A Figura 3.3 exibe o caminho pós-crítico (equação (3.12)) em função da perturbação q, para diferentes valores de a_1 . Para facilitar a comparação das curvas e em particular da curvatura inicial em cada caso, tem-se no eixo vertical a diferença ($1 - 1_{Pcri}$).

Figura 3.3: Caminho pos -crítico para diferentes valores da inclinação da mola.

Verifica-se que a bifurcação pode ser simétrica estável ou instável, dependendo dos parâmetros da estrutura. Somente as configurações exibidas nas partes (b) e (c) possuem um caminho pós-critico estável, isto é, a medida que aumenta-se a perturbação q, o sistema é capaz de suportar mais carga. Como nas outras duas configurações, o caminho resultou instável, uma análise da estabilidade do caminho pós-crítico em função da variação dos parâmetros a_1 , x_p , x_0 e x_1 é necessária.

3.1.6.1. Análise da estabilidade do caminho pós-crítico

O que irá dizer se um caminho pós-crítico é estável ou não é o sinal da segunda derivada da variação da energia potencial com relação à q ao longo do caminho não-linear de equilíbrio. Da teoria de máximo e mínimo de funções, tem-se que se

$$\frac{d^2 \Delta \boldsymbol{p}}{d\boldsymbol{q}^2} > 0 \tag{3.26}$$

o equilíbrio será estável, e se

$$\frac{d^2 \Delta \boldsymbol{p}}{d\boldsymbol{q}^2} < 0 \tag{3.27}$$

o equilíbrio será instável.

Caso se deseje estudar apenas o comportamento inicial do caminho póscrítico, pode-se, para sistemas com controle de carga, substituir este critério, pela análise do sinal da curvatura inicial (critério de Koiter) [13].

Calculando a segunda derivada da equação (3.12) em relação a q e fazendo o limite quando q tende a zero, obtêm se a equação

 $b = 2\cos a_1^2 (x_0 \operatorname{sen} a_1 (1 - 5 \operatorname{sen} a_1^2 \cos a_1^2) - x_1 (1 - 5 \operatorname{sen} a_1^2 \cos a_1^2))$ (3.28)

que define a curvatura inicial do caminho pós-crítico, sendo esta função de a_1 , $x_0 e x_1$.

A Figura 3.4 mostra a derivada da curvatura inicial, *b*, em relação a x_0 e x_1 . Verifica-se que ambas se anulam nos mesmos pontos. A derivada com relação a x_0 é negativa dentro do intervalo $31,7^\circ \le a_1 \le 58,3^\circ$. Para este mesmo intervalo, a derivada da curvatura inicial em relação x_1 é positiva. Isto quer dizer que estando dentro deste intervalo, um acréscimo em x_1 aumenta o valor da curvatura inicial, conseqüentemente aumentando a estabilidade do sistema, o mesmo acontece se diminuirmos x_0 dentro deste intervalo.

Figura 3.4: Derivada da curvatura inicial com relação a $x_0 e x_1$.

Fazendo a curvatura inicial igual a zero, chega-se novamente a um valor limite para x_0 . Se x_0 for menor que $x_1/\text{sen}a_1$, a curvatura inicial é positiva dentro do intervalo mencionado. Então, para o equilíbrio ser estável, a_1 deverá estar dentro deste intervalo. Se x_0 for maior que $x_1/\text{sen}a_1$ a curvatura inicial é positiva somente fora do intervalo, porém este valor de x_0 leva a uma carga crítica negativa, como visto anteriormente.

Desta forma, conclui-se que o intervalo onde a bifurcação simétrica é estável é em $31,7^\circ \le a_1 \le 58,3^\circ$. Para inclinações de mola igual a $31,7^\circ$ ou $58,3^\circ$ a curvatura inicial é sempre nula.

Na ausência de pré-tensionamento, a inclinação com a máxima curvatura inicial para este exemplo é aproximadamente em 42,5°. x_0 e a diminuição de x_1 provocam uma pequena redução neste valor.

A Figura 3.5 exibe o caminho pós-crítico para as situações que estão muito próximas da fronteira do intervalo estável. Se fossem tomados os valores exatos que definem o intervalo, o caminho pós-crítico inicial seria praticamente uma reta, como acontece com a coluna de Euler.

Figura 3.5: caminhos pos -críticos na fronteira de estabilidade.

3.1.7. Modelos Bi-lineares

É usual na literatura, modelarem-se os estais da torre como molas bilineares que resistem de forma diferenciada aos esforços de tração e compressão. Dentre estes modelos, o mais usado é aquele que considera que as molas só são capazes de resistir a esforços de tração. O objetivo deste item é analisar o efeito deste modelo constitutivo no comportamento da torre. Este modelo serve também para entender o que acontece quando há a ruptura de um dado estai.

Considere que inicialmente existe uma única mola, localizada no lado esquerdo da torre e capaz de resistir a esforços de tração e compressão, como ilustra a Figura 3.6.

Figura 3.6: Torre com apenas uma mola

O caminho pós-crítico desta estrutura, considerando $\mathbf{x}_0 = \mathbf{x}_p = 0$, $\mathbf{x}_1 = 1$ e $\mathbf{a}_1 = 45^0$, é mostrado na Figura 3.7, onde se verifica que, neste caso, a estrutura apresenta uma bifurcação assimétrica, apresentando um comportamento pós-crítico estável quando a mola está comprimida e instável quando a mola está tracionada. Ao se acrescentar uma segunda mola do lado direito, idêntica a primeira, o efeito simultâneo das duas molas não só duplica o valor da carga crítica, como também torna o caminho pós-crítico simétrico e estável. Esta mudança de comportamento pode ser facilmente entendida analisando-se a Figura (3.7). Verifica-se que ao se dar uma perturbação q, a força de compressão da mola à direita é bem maior que a força de tração da mola à esquerda (encurtamento maior que alongamento), o mesmo acontecendo com o braço de alavanca do momento com relação à base da coluna. Pode-se assim concluir que o momento restaurador da mola comprimida é bem maior que aquele gerado pela mola tracionada.

Figura 3.7: Caminhos de equilíbrio para o modelo com apenas uma mola e duas molas.

Figura 3.8: Reações das molas sobre a torre e seus respectivos braços de alavanca.

Ao se considerar o modelo constitutivo de mola que reage somente a tração, obtêm-se para o caminho pós-crítico dois ramos instáveis com elevada sensibilidade a imperfeições, como mostra a Figura 3.9 para molas sem protensão inicial ($x_0 = 0$). Ao se considerar que as molas estão protendidas, (curva para $x_0 = 0,1$ na Figura 3.9), tem-se inicialmente para o caminho pós-crítico um pequeno trecho estável com pequena curvatura inicial, sendo este trecho acompanhado de um ramo altamente instável quando a força de tração em uma das molas se anula.

Figura 3.9: Caminhos de equilíbrio considerando que as molas resistem somente a esforços de tração.

Estes resultados servem também para explicar o que acontece com o caminho pós-crítico quando, por algum motivo, uma das molas sofre um colapso, criando uma mudança brusca nas forças que agem sobre a torre. Na Figura 3.10a mostra-se o que acontece quando ocorre o colapso de uma mola

48

tracionada (no caso, para melhor visualizar os resultados, quando a rotação atinge 30°). Verifica-se que há uma perda repentina da capacidade de carga da torre, mas a mola restante que está comprimida faz com que a capacidade de carga volte a crescer com o aumento da rotação θ . Se, ao contrário, ocorrer o colapso da mola comprimida, há um decréscimo repentino da capacidade de carga da estrutura, relativamente maior que no caso anterior, e o caminho pós-crítico após este ponto se torna instável (Figura 3.10b).

Figura 3.10: Rompimento de estais: (a) rompe-se a mola tracionada. (b) rompe-se a mola comprimida.

Observa-se que, se em uma estrutura ocorrerem problemas com algum estai, isto introduz uma assimetria nas forças que agem sobre a torre, provocando mudanças importantes no comportamento estrutural.

3.1.8.

Caminhos de equilíbrio considerando imperfeições iniciais

Figura 3.11: Modelo imperfeito

Considerando o modelo imperfeito (Figura 3.11), estando a barra na sua configuração inicial com uma rotação q_0 , sujeita a uma carga lateral q, e a cargas axiais *P* excêntricas, o caminho não-linear de equilíbrio é dado por

$$P_{1} = \frac{1}{\Gamma_{1}(\operatorname{sen} q + e_{1} \cos q)} \left(\sum_{i=1}^{nm} \frac{d}{dq} \left(\frac{1}{2} \frac{k_{0}^{2}}{k_{1}} + k_{0i} \Delta l_{qi} + \frac{1}{2} k_{1i} \Delta l_{qi}^{2} \right) \frac{1}{L} - \sum_{i=2}^{nc} P_{i} \Gamma_{i}(\operatorname{sen} q + e_{i} \cos q) - py \operatorname{sen} q - \frac{1}{2} qL \cos q \right)$$
(3.29)

A variação do comprimento da mola devida à rotação q é dada, para as molas do lado esquerdo da barra e do lado direito, respectivamente, por

$$\Delta I_{qi} = \mathbf{g}_{i} \mathcal{L} \left(\sqrt{\left(\frac{1}{\tan a_{i}} + \operatorname{sen} \mathbf{q}\right)^{2} + \cos^{2} \mathbf{q}} - \sqrt{\left(\frac{1}{\tan a_{i}} + \operatorname{sen} \mathbf{q}_{0}\right)^{2} + \cos^{2} \mathbf{q}_{0}} \right) \quad (3.30a)$$
$$\Delta I_{qi} = \mathbf{g}_{i} \mathcal{L} \left(\sqrt{\left(\frac{1}{\tan a_{i}} - \operatorname{sen} \mathbf{q}\right)^{2} + \cos^{2} \mathbf{q}} - \sqrt{\left(\frac{1}{\tan a_{i}} - \operatorname{sen} \mathbf{q}_{0}\right)^{2} + \cos^{2} \mathbf{q}_{0}} \right) \quad (3.30b)$$

3.1.8.1. Influência da imperfeição geométrica - q_0

A influência da perturbação inicial no caminho de equilíbrio é apresentada na Figura 3.12, em que a carga lateral e a excentricidade são nulas. A presença de uma imperfeição inicial faz com que o ponto de bifurcação desapareça e o caminho não-linear de equilíbrio da estrutura imperfeita passe a ser ligeiramente inferior ao do caminho pós-crítico da estrutura imperfeita, tendendo assintoticamente a este à medida que crescem as rotações.

Figura 3.12: Caminho de equilíbrio do modelo perfeito e com dois níveis de imperfeição inicial.

Nas Figuras 3.12a e 3.12b, o modelo apresentado tem uma única carga axial, aplicada na extremidade de uma barra de 10m de comprimento. As molas estão conectadas à extremidade superior da barra, com uma força de prétensionamento de 1N, $F_{01} = 1N$, e constante de mola, $k_1 = 3N/m$.

3.1.8.2. Influência da excentricidade do carregamento - e_1

A presença de uma excentricidade do carregamento tem o mesmo efeito de uma perturbação inicial q_0 , como mostra a Figura 3.13, para dois valores diferentes da excentricidade.

Figura 3.13: Caminhos de equilíbrio do modelo perfeito e com dois níveis de excentricidade.

3.1.8.3. Influência da carga lateral - *q*

A presença de uma carga lateral também provoca os mesmos efeitos de uma imperfeição inicial, conforme exibido na Figura 3.14. Novamente toma-se o mesmo modelo apresentado anteriormente, considerando um único tipo de imperfeição, a carga lateral. Cabe lembrar que em muitas prescrições de projeto o vento é modelado como uma carga lateral uniforme.

Figura 3.14: Caminho de equilíbrio do modelo perfeito e com dois níveis de carregamento lateral.

3.1.9. Influência do aumento no número de estais

Apresenta-se uma análise de um modelo com 4 molas, para saber se as conclusões tiradas do modelo com apenas duas molas podem ser generalizadas.

A Figura 3.15 exibe um modelo com 4 molas, onde os dados relativos a cada mola estão indicados.

Figura 3.15: Modelo com 4 molas.

Cada par de molas adicionado ao problema acaba inserindo novas variáveis, relativas à geometria e rigidez de cada mola. Cabe ressaltar que, como ocorre em aplicações práticas, considera-se que cada par de molas simétricas em relação ao eixo da torre possui as mesmas características.

3.1.9.1. Análise da carga crítica de um modelo de 4 molas

Analisando o problema na forma dimensional, as derivadas da equação do caminho pós-crítico em relação a F_{01} e a k_1 permanecem inalteradas, já as derivadas em relação a F_{02} e a k_2 são

$$\frac{\partial P_{1cri}}{\partial F_{02}} = -2 \frac{g_2 \cos a_2^2 \sin a_2}{\Gamma_1}$$
(3.31a)

$$\frac{\partial P_{1cri}}{\partial k_2} = 2 \frac{g_2^2 \cos a_2^2}{\Gamma_1}$$
(3.32b)

mudando apenas o índice referente à mola.

Como pode ser observado, a derivada de P_{1cri} em relação a a_1 não muda de valor quando varia-se a_2 , assim $\frac{\partial^2 P_{1cri}}{\partial a_2 \partial a_1} = 0$. A mesma coisa acontece com

derivada de P_{1cri} em relação a a_2 quando muda-se a_1 , $\frac{\partial^2 P_{1cri}}{\partial a_1 \partial a_2} = 0$. Isto quer dizer que o valor de a_1 que provoca uma carga crítica máxima, independe do valor de a_2 e de todas as variáveis que estão relacionadas às outras molas, o mesmo acontece com a_2 em relação às variáveis das outras molas.

De forma análoga ao caso anterior, onde havia apenas duas molas, o valor de a_2 que gera um máximo para a carga crítica é zero. Assim o ponto de máximo é dado pela seguinte combinação de valores: g_1 , g_2 , L, $k_1 e k_2$ máximos, p, \overline{y} , F_{01} , F_{02} , $a_1 e a_2$ mínimos. Na análise paramétrica realizada no LINGO chegou-se aos mesmos resultados.

A Figura 3.16a exibe a variação da carga crítica em função de $a_1 e a_2$, com $F_{01} e F_{02}$ nulos, em (b) varia-se $k_1 e k_2$. O comportamento é o mesmo do modelo com apenas duas molas.

Figura 3.16: Variação da carga crítica: (a) em função da inclinação das molas e (b) em função das constantes de mola.

3.1.9.2. Análise da estabilidade do caminho pós-crítico de um modelo com 4 molas

As derivadas da curvatura inicial é em relação a F_{02} e k_2 são idênticas às exibidas nas Figura 3.4. Como já comentado no caso de apenas duas molas, valores usuais de F_{01} e k_1 conduzem para o intervalo $31,7^\circ \le a_1 \le 58,3^\circ$, que, do ponto de vista da estabilidade, é a faixa aceitável para a inclinação da mola.

Do ponto de vista da carga crítica, sabe-se que o melhor é uma inclinação menor possível, assim se apenas algumas molas ficarem dentro do intervalo acima, algumas outras poderão estar fora dele, aumentando significativamente a carga crítica sem alterar muito a estabilidade do caminho pós-crítico.

A Figura 3.17 exibe uma comparação do caminho pós-crítico e da carga crítica para dois modelos de quatro molas, variando-se apenas a inclinação de um par de molas. Na Fig. 3.17a todas as molas possuem inclinação de 45° (molas paralelas), estando a primeira presa ao topo da torre e a segunda a 0,6*L*. Nesta figura também encontram-se os dados relativos ao modelo. Em 3.17b, analisa-se o mesmo problema, variando apenas a inclinação do segundo par de molas, que passa a ser 22,5°, fora do intervalo acima mencionado. A carga crítica sobe cerca de 20% e o caminho pós-crítico inicial permanece estável, ma s verifica-se que neste caso após atingir um valor máximo ele passa a ser instável. Em ambos os casos, as constantes de mola e a protensão são idênticas.

Figura 3.17: Caminhos pós-críticos para diferentes inclinações das molas.

3.2. Modelo de molas não lineares

O estudo considerando molas não lineares é realizado de forma análoga ao já desenvolvido para o modelo com molas lineares, a única diferença é dada pela energia interna de deformação, pois a variação do trabalho *W* produzido pelas cargas externas durante uma rotação q da barra permanece igual (equação (3.10)).

3.2.1. Energia interna de deformação

Considera-se, com base no tipo de não-linearidade exibida por diversos tipos de estais, que a força que age na mola não linear pode ser descrita por um termo linear mais um termo com não-linearidade cúbica, a saber

$$F = k_1 \Delta I + k_2 \Delta I^3 \tag{3.33}$$

onde k_1 e k_2 são as constantes de mola e ΔI é o alongamento da mola.

A energia interna de deformação armazenada em uma mola durante um alongamento ΔI é então dada por

$$\Delta U = \frac{k_1}{2} \Delta l^2 + \frac{k_2}{4} \Delta l^4$$
 (3.34)

Como anteriormente, considera-se o alongamento ΔI da mola como sendo a soma de um alongamento inicial ΔI_0 , mais o alongamento ΔI_q causado durante a rotação q da barra (eq. (3.4)).

Inserindo (3.4) em (3.34) e fazendo-se $\Delta I_q = 0$ e $F = F_{01}$, determina-se ΔI_0 em função de F_{01} , k_1 e k_2 . ΔI_0 é a raiz real e positiva da equação abaixo,

$$F_{01} = k_1 \Delta I_0 + k_2 \Delta I_0^{-3} \tag{3.35}$$

e a força na mola é então escrita na forma:

$$F = F_{01} + k_1 \Delta l_q + 3k_2 \Delta l_0^2 \Delta l_q + 3k_2 \Delta l_0 \Delta l_q^2 + k_2 \Delta l_q^3$$
(3.36)

Fazendo novamente $\Delta I = \Delta I_0 + \Delta I_q$ e substituindo em (3.34), a variação da energia interna de deformação assume a forma:

$$\Delta U = \frac{1}{2} k_1 \Delta l_0^2 + \frac{1}{4} k_2 \Delta l_0^4 + k_0 \Delta l_q + \frac{1}{2} k_1 \Delta l_q^2 + \frac{3}{2} k_2 \Delta l_0^2 \Delta l_q^2 + k_2 \Delta l_0 \Delta l_q^3 + \frac{1}{4} k_2 \Delta l_q^4$$
(3.37)

A variação do comprimento da mola devido a uma rotação q é dada pelas equações (3.8) e (3.9).

3.2.2. Equação do caminho pós-crítico de equilíbrio

Novamente, ao derivar-se a equação de energia potencial total em relação a coordenada generalizada q, obtém-se a equação não-linear de equilíbrio do caminho pós-crítico. Escolhendo uma carga axial como parâmetro variável, e para atender o equilíbrio, esta carga é dada como

$$P_{1} = \frac{1}{\Gamma_{1} \operatorname{sen} q} \left(\sum_{i=1}^{nm} \frac{d\Delta U}{dq} \frac{1}{L} - \sum_{i=2}^{nc} P_{i} \Gamma_{i} \operatorname{sen} q - py \operatorname{sen} q \right)$$
(3.38)

sendo ΔU determinado na equação (3.37).

3.2.3. Análise da carga crítica

A carga crítica para um modelo com duas molas e apenas uma carga axial, além do peso próprio, é dada por

$$P_{cri} = \frac{\cos a_{1}^{2}}{\Gamma_{1}} \left(2g_{1} \left(\sin a_{1} \Delta I_{01} \left(-k_{1} - \Delta I_{01}^{2} k_{2} \right) + L \cos a_{1}^{2} \left(k_{1} + 3\Delta I_{01}^{2} k_{2} \right) \right) + L \sin a_{1}^{2} \left(k_{1} + 3\Delta I_{01}^{2} k_{2} \right) \right) - py \left(\cos a_{1}^{2} + 2 \sin a_{1}^{2} + 2 \sin a_{1}^{2} \tan a_{1}^{2} \right) \right)$$
(3.39)

Dividindo-se a equação acima por (k_1L) , obtêm-se o parâmetro de carga não-dimensional, similar ao encontrado no item anterior.

3.2.3.1. Variação da carga crítica em relação as constantes de mola

A derivada da carga crítica em relação às constantes de mola, k_1 e k_2 são sempre positivas para valores de ΔI_{01} menores que os dados respectivamente por

$$\Delta I_{01\lim k1} = \frac{g_1 L}{\operatorname{sena}_1} \tag{3.40}$$

$$\Delta I_{01\lim k2} = 3 \frac{g_1 L}{\operatorname{sen} a_1}$$
(3.41)

Estes valores são impossíveis de acontecer fisicamente, já que $g_1L/\text{sen}a_1$ é o comprimento da mola correspondente à posição q = 0, após ser aplicado o alongamento inicial ΔI_{01} . Então, a carga crítica sempre aumenta a medida que k_1 ou k_2 sofrem um incremento. Se o alongamento inicial é zero, k_2 acaba desaparecendo da equação da carga crítica, restando apenas k_1 e a inclinação da mola, como no problema linear.

3.2.3.2.

Variação da carga crítica em relação a inclinação da mola

Derivando a carga crítica em relação a a_1 não é possível escrever uma função que determina o ponto de máximo para a_1 em função de ΔI_{01} , $k_1 \in k_2$, mas pelo sinal da variação da carga crítica em função de a_1 é possível prever o ponto de máximo.

Quando ΔI_{01} for dado por

$$\Delta I_{01 \lim a1k1} = 2 \frac{g_1 L \operatorname{sen} a_1}{2 \operatorname{sen} a_1^2 - \cos a_1^2}$$
(3.42)

isto acaba anulando os termos que contém k_1 na equação da derivada da carga crítica em relação a a_1 . Quando o valor absoluto de ΔI_{01} é inferior a este valor, os termos que contêm k_1 são negativos. Para ΔI_{01} maior, os termos são positivos.

Se ΔI_{01} é igual a

$$\Delta I_{01 \lim a1k2} = 6 \frac{g_1 L \operatorname{sen} a_1}{2 \operatorname{sen} a_1^2 - \cos a_1^2}$$
(3.43)

os termos que contêm k_2 acabam se anulando. Novamente, para ΔI_{01} inferior a este valor, os termos que contêm k_2 são negativos. Se o valor absoluto de ΔI_{01} for maior, os termos serão positivos e, conseqüentemente, uma variação em a_1 aumenta a carga crítica, já que $\Delta I_{01lima 1k2} > \Delta I_{01lima 1k1}$.

Obviamente ΔI_{01} nunca será maior que (3.42) e (3.43), porque isto representaria um alongamento maior que o comprimento da mola, então pode-se concluir que, ao aumentar a inclinação da mola, a carga crítica diminui.

3.2.3.2.1. Influência de a_1 e g_1

Na variação da carga crítica em relação à inclinação da mola, quando o comprimento da mola é mantido constante ou a projeção horizontal do

comprimento da mola é constante, uma redução em g_1 , apesar de diminuir a_1 sempre diminui a carga crítica, independente dos valores de k_1 , $k_2 \in \Delta I_{01}$.

3.2.3.3. Variação da carga crítica em relação ao alongamento inicial da mola

Analisando a derivada da carga crítica em relação ao alongamento inicial, ΔI_{01} , percebe-se que quanto maior for o seu valor, maior é a carga crítica. Isto deve-se à constante k_2 , pois, quando ela é igualada a zero, o problema volta a ser o de uma mola linear, onde a força inicial, $F_{01} = k_1 \Delta I_{01}$, reduz o valor da carga crítica. No problema não linear, há um determinado valor máximo para o alongamento inicial da mola, sendo que, ao atingir este valor, qualquer incremento em ΔI_{01} provoca uma redução na carga crítica. Também há um determinado valor para ΔI_{01} que provoca um mínimo para a carga crítica, sendo que, a partir deste valor, um incremento em ΔI_{01} produz um aumento na carga crítica.

O valor do alongamento inicial ΔI_{01} que provoca um máximo e um mínimo para a carga crítica é dado respectivamente por

$$\Delta I_{01\text{max}} = \frac{g_1 L}{\text{sen}a_1} + \sqrt{\frac{g_1^2 L^2}{\text{sen}a_1^2} - \frac{1}{3}\Delta k}$$
(3.44)

$$\Delta I_{01\min} = \frac{g_1 L}{\mathrm{sen} a_1} - \sqrt{\frac{g_1^2 L^2}{\mathrm{sen} a_1^2}} - \frac{1}{3} \Delta k$$
(3.45)

sendo Dk dado pela relação

$$\Delta k = k_1 / k_2 \tag{3.46}$$

O nível de alongamento existente na mola na configuração q = 0 não deve ser coincidente com o alongamento dado em (3.45), pois é o valor de ΔI_{01} que provoca um mínimo para a carga crítica. Deve ser, de preferência, maior, e o mais próximo possível do valor indicado em (3.44). Novamente aparece o termo $g_1L/\operatorname{sen} a_1$, indicando que a equação (3.44) é impossível fisicamente. O alongamento inicial que provoca um mínimo para a carga crítica é um valor muito pequeno, caso a relação, Dk, entre as constantes seja pequena. Quando Dk, for um número grande, o valor dado por (3.45) será relativamente grande, indicando que qualquer incremento em ΔI_{01} reduzirá a carga crítica.

Se a mola puder receber um alongamento inicial maior que o dado por

$$\Delta I_{01\text{lim}} = \frac{3}{2} \frac{L}{\text{sen}a_1} - \sqrt{\frac{9L^2}{4 \text{sen}a_1^2}} - \Delta k \tag{3.47}$$

então quanto maior é o alongamento inicial, maior é a carga crítica.

Para uma determinada faixa de valores da expressão sob o radical nas equações (3.44) e (3.45), o ponto de máximo será sempre em $\Delta I_{01} = 0$. Assim, para que o ponto de máximo não seja em $\Delta I_{01} = 0$, o parâmetro g_1 não pode ser inferior a

$$g_{1\min 1} = \frac{2}{3} \frac{\sqrt{\Delta k}}{L} \operatorname{sen} a_1 \tag{3.48}$$

Lembrando que g_1 é, no máximo, igual a 1; se Dk; em (3.47), é maior que $9L^2$ / 4 sen a_1^2 , o máximo é sempre em zero ($k_1 >> k_2$).

A Figura 3.18a apresenta a variação da carga crítica para um valor de g_1 igual ao dado em (3.48). Na Figura 3.18b empregou-se um valor de g_1 um pouco maior.

Figura 3.18: variação da carga da carga crítica em função do deslocamento inicial para dois valores de g_1 .

Na Figura 3.18b percebe-se que o ponto de máximo foi atingido quando o deslocamento inicial se tornou maior que o comprimento inicial, conforme já comentado ao apresentar a equação (3.44).

Através das análises apresentadas até aqui, e levando em conta as limitações físicas do problema, pode-se concluir que o ponto de máximo é obtido no ponto de coordenadas: g_1 , L, k_1 e k_2 máximos, p, \overline{y} , a_1 e ΔI_{01} mínimos, onde todas as coordenadas são positivas. Estes valores foram confirmados pela análise no LINGO. Porém, dependendo do intervalo analisado, algumas destas

coordenadas poderão variar. Na realidade o intervalo de análise para a_1 não começa em 0 e também não vai até 90°.

3.2.4.

Análise da estabilidade do caminho pós-crítico de equilíbrio

A Figura 3.19 exibe o caminho pós-crítico (equação 3.39) em função da perturbação q, para dois valores de a_1 e de alongamento inicial, ΔI_{01} .

Figura 3.19: Caminhos pós-críticos de equilíbrio para diferentes valores de $a_1 e \Delta l_{01}$.

Pode-se perceber que, quando o alongamento inicial cresce, há uma tendência a diminuir a estabilidade do caminho pós-crítico. Dependendo dos valores de inclinação e alongamento inicial, o caminho torna-se instável.

A seguir faz-se a análise da variação do sinal de $d^2 \Delta p / dq^2$ ao longo do caminho pós-crítico. Se o alongamento inicial é nulo, praticamente todas as inclinações irão produzir $d^2 \Delta p / dq^2$ positivo para configurações pós-críticas na vizinhança da carga crítica. Ou seja, tem-se uma bifurcação estável; a menos que k_2 seja muito pequeno. Na Figura 3.20a exibe-se a variação de $d^2 \Delta p / dq^2$ para $k_2 = 1$ e $\Delta I_{01} = 0$. Na parte (b) tem-se novamente a variação da curvatura inicial em função de a_1 e agora k_2 , para $k_1 = 1$ e $\Delta I_{01} = 0$. Nas partes (c) e (d) repete-se a análise, com $\Delta I_{01} = 0.5m$, menos de 5% do comprimento da mola, quando α for 45°.

Figura 3.20: Variação $d^2 \Delta p / dq^2$: (a) em função de k_1 e a_1 na ausência de prétensionamento; (b) em função de k_2 e a_1 na ausência de pré-tensionamento. (c) e (d) os casos anteriores com pré-tensionamento.

Através da figura 3.20 percebe-se que $d^2 \Delta p / dq^2$ é muito mais sensível a uma variação de k_2 do que a uma variação em k_1 , principalmente para pequenas inclinações da mola. Portanto a presença de k_2 acaba aumentando significativamente o intervalo em que há estabilidade. Quando o alongamento inicial é inserido, $d^2 \Delta p / dq^2$ diminui de valor, como acontecia com a curvatura inicial quando a protensão era considerada no caso da mola linear.

A Figura 3.21 apresenta o caminho pós-crítico dividido pela carga crítica, para duas inclinações da mola, para diferentes valores de k_2 e para dois níveis de pré-tensionamento. Pelas Figuras 3.21a e b conclui-se que o aumento em k_2 acabou influenciando mais o caminho pós-crítico de menor inclinação, o que era esperado. Nas partes (c) e (d) aplicou-se um alongamento inicial igual a 10% do comprimento da mola (relativo ao comprimento final). As Figuras (e) e (f) apresentam *P-Pcri* para este mesmo caso e mostram que a curvatura do caminho pós-crítico da torre com a mola menos inclinada é a que cresceu mais, com o aumento de k_2 .

2.4-10 $p = 0; \Delta l 0 1 = 0;$ $p = 0; \Delta l 0 1 = 0;$ k1 = 10N/m; $k_1 = 10 N/m;$ $k_2 = 1 N/m^3;$ $k_2 = 0, 1 N/m^3;$ 8 L = 10m L = 10m2 6 . Бод 1.6⁻ P/Pcri $\alpha_1 = 45$ 4 $\alpha_1 = 20^{\circ}$ 1.2 α1 = 20° 2 0.8-0--30 0 30 -60 -30 0 30 60 -60 60 θ[°] θ[°] (a) (b) 1.8-10 $p = 0; \Delta b1 = 0, 1101;$ k1 = 10N/m; $p = 0; \Delta l 01 = 0, 1 l 01;$ $k_1 = 10N/m;$ $k_2 = 1N/m^3;$ L = 10m $k_2 = 0, 1 N/m^3;$ 1.6 8-L = 10mP/Pcri P/Pcri 6 α1 = 45° P/Pcri $\alpha_1 = 45$ 1.2 4 $\alpha 1 = 20^{\circ}$ 2 1 $\alpha^1 = 20^\circ$ 0.8 0--30 0 -60 -30 0 30 30 60 -60 60 θ[°] θ[°] (C) (d) 80-600 $p = 0; \ \Delta lo1 = 0, 1 \ lo1; \\ k1 = 10 \ N/m;$ $p = 0; \Delta l_{01} = 0, 1 l_{01};$ $k_1 = 10$ N/m; $k_2 = 0,1$ N/m³; 60 $k_2 = 1 N/m^3;$ L = 10m L = 10m40-400 $\alpha_1 = 45$ P-Pcri P-Pcri $\alpha_1 = 45$ 20-0 200 $\alpha_1 = 20$ α1 = 20⁴ -20 0--40 -30 30 60 -60 -30 30 60 -60 0 0 θ[°] θ[°] (e) (f)

Figura 3.21: Caminhos pós-criticos de equilíbrio.

O que acontece nas Figuras 3.21c e d, é que, ao variar-se k_2 , a carga crítica para a configuração de menor inclinação cresce mais do que a da outra configuração. Conforme foi verificado, para a configuração menos inclinada, a pequena variação em k_2 quase triplicou o valor da carga crítica, enquanto que para a outra inclinação (mais longe de zero), o aumento da carga crítica foi pouco mais de 1,5 vezes.

3.2.5. Caminhos de equilíbrio considerando imperfeições iniciais

Considerando o modelo imperfeito e os carregamentos, conforme mostra a Figura 3.11, o caminho de equilíbrio para o modelo de molas não-lineares é dado por

$$P_{1} = \frac{1}{\Gamma_{1}(\operatorname{sen}\boldsymbol{q} + \boldsymbol{e}_{1} \cos \boldsymbol{q})} \left(\sum_{i=1}^{nm} \frac{d\Delta U}{d\boldsymbol{q}} \frac{1}{L} - \sum_{i=2}^{nc} P_{i} \Gamma_{i} (\operatorname{sen}\boldsymbol{q} + \boldsymbol{e}_{i} \cos \boldsymbol{q}) - py \operatorname{sen}\boldsymbol{q} - \frac{1}{2} qL \cos \boldsymbol{q} \right)$$
(3.49)

Foi visto no modelo de molas lineares que tanto a excentricidade da carga axial e a carga lateral atuam como imperfeições iniciais. O comportamento em molas não lineares é absolutamente igual, como mostram as Figura 3.22 e 3.23. A única diferença é que a curvatura do caminho é bem maior, devido a k_2 .

Figura 3.22: Caminhos de equilíbrio: (a) imperfeições iniciais; (b) excentricidade do carregamento.

Figura 3.23: Caminhos de equilíbrio com a presença de carregamento lateral.

3.2.6. Influência de um número maior de molas

Como visto no modelo de molas lineares, a análise feita com apenas duas molas permanece válida, não importando o número de molas que possa o modelo ter, porque analisando a carga crítica ou a estabilidade do caminho póscrítico em parcelas, proveniente de cada mola, as equações (parcelas) serão independentes.

Assim, pode-se concluir que o ponto em que a carga crítica é máxima tem as seguintes coordenadas: g_i , L, k_{2i-1} , k_{2i} máximos, p, \overline{y} , $a_i \in \Delta I_{0i}$ mínimos, onde *i* representa a mola. Se a mola tiver uma restrição que a impeça de sofrer um alongamento inicial maior que o dado pela equação (3.47) o ponto de máximo para estas molas passa a estar em $\Delta I_{0i} = 0$.

A respeito da estabilidade, o ponto em que a estabilidade é máxima é em k_{2i} máximo e ΔI_{0i} e a_i mínimos.